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ABSTRACT 

 

In this paper we present a software programmable design 

flow that facilitates the implementation and integration of 

efficient digital pre-distortion (DPD) solutions on the 

leading-edge FPGAs. In addition to software 

programmability, another key contribution of this design 

flow is the flexible partitioning of functionality among the 

hardware and software components, depending on the 

complexity of the DPD parameter estimation algorithm in 

use. We have applied ARM-specific optimizations to the 

software implementation and used Vivado High-Level 

Synthesis (HLS) tool as the design tool for the 

programmable logic. We present a comprehensive study 

reporting the overall system performance when exploring 

the partitioning of the functionality among hardware and 

software. For low-complexity algorithms, we show that a 

software-only solution is applicable after carrying out the 

ARM-specific optimizations. For higher-complexity 

algorithms, we use Vivado HLS to accelerate the time-

consuming blocks in the programmable logic, leading to a 

5X speed up in the overall algorithm execution time. 

 

 

1. INTRODUCTION 

 

In third and fourth generation (3G/4G) wireless systems and 

beyond, the application of techniques such as non-constant 

envelope modulations, MIMO processing and carrier 

aggregation plays a key role in meeting the target 

requirements for the spectral efficiency, bit-error rate 

(BER), cell capacity and throughput [1],[2]. However, such 

techniques also result in many practical challenges in the air 

interface, which require the use of more sophisticated and 

flexible digital radio front-end (DFE) architectures in the 

wireless base-station.  For example, one of the major issues 

in practice is the high peak-to-average power ratio (PAPR) 

of non-constant envelope signals [3]. Due to high PAPR and 

power amplifier (PA) non-linearity, the transmitted signals 

get distorted. The distortion typically results in a growth in 

the out-of-band (OOB) power of the signal, causing adjacent 

channel interference, and increases the BER.  

 Digital Pre-Distortion (DPD) is an advanced signal 

processing technique which mitigates the signal distortion 

mentioned above by inverting the non-linearity effects of 

the PA [3]. A generic DPD system consists of a pre-distorter 

that compensates for the nonlinearity effects prior to the 

input of the PA and an estimator on the feedback path from 

the output of the PA. The estimator updates the pre-distorter 

parameters to reflect the possible changes in the operation 

characteristics. Based on the modulation type, power 

amplifier technology and transmission bandwidth, the 

effective DPD solution can differ. Hence, it is worthwhile to 

provide a flexible design methodology for DFEs that 

facilitates the implementation and integration of new DPD 

parameter estimation algorithms.  

 Modern Field Programmable Gate Arrays (FPGAs) are 

a promising target platform for the implementation of a 

flexible architecture for efficient DPD solutions. 

Furthermore, there are several studies showing that FPGAs 

could achieve 100X higher performance and 30X better 

cost-performance than traditional DSP processors in several 

signal processing applications [4]. However, the key barrier 

for the widespread adoption of FPGAs in signal processing 

algorithms was the traditional hardware-centric design-flow 

and tools. That is, the traditional use of FPGAs requires 

significant hardware design experience. Recently, new 

generation FPGAs that integrate the programmable logic 

fabric with industry-standard embedded processors have 

become available [5]. These leading-edge platforms enable 

the partitioning of functionality among hardware and 

software components to increase the overall system 

performance.  Furthermore, high-level synthesis (HLS) tools 

have become available as the design tools for FPGAs, which 

increase the design productivity and reduce the development 

time, while producing very competitive Quality of Results 

(QoR) [4]. 

 This paper describes a flexible and software-

programmable design flow for the implementation of the 

DPD parameter estimation algorithms on the leading-edge 

FPGAs. The two key contributions of this methodology are: 

1) flexible partitioning of the functionality among the 

hardware and software components, depending on the 

complexity of the algorithm in use, 2) productivity increase 
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thanks to the design tools that allows the implementation 

and verification of the design at the software level. We have 

employed the 128-bit single instruction multiple data 

(SIMD) extension for the ARM processors, called NEON, 

to optimize the software implementation. Furthermore, we 

have used Vivado HLS, formerly called AutoESL, as the 

design tool for the programmable logic. 

 The remainder of this paper is organized as follows. In 

Section 2, we give information about our target FPGA 

platform [5] and describe our software-programmable 

design flow. In Section 3, we present the system model for a 

generic DPD solution and specify the parts to be 

implemented for DPD parameter estimation. The details of 

our software and hardware implementations and the related 

optimizations are explained in Section 4. In Section 5, we 

present a comprehensive evaluation of the overall system 

performance when exploring the partitioning of 

functionality among the hardware and software components. 

It is shown that our software-only solution is able to support 

low-complexity DPD parameter estimation algorithms. For 

higher-complexity algorithms, our flexible design flow 

allows the hardware acceleration of time-consuming blocks 

in the programmable logic, where we use the Vivado HLS 

tool to generate the necessary hardware accelerators. The 

conclusions can be found in Section 6. 

 

2. TARGET PLATFORM AND 

SOFTWARE-PROGRAMMABLE DESING FLOW 

 

2.1 Software Design Flow on the Target Platform 

 

In recent years, embedded processors and programmable 

logic devices merged into one chip, enabling better 

interaction between the two and subsequently a finer 

grained partitioning between hardware and software. As a 

recent example of such a platform, the Zynq platform from 

Xilinx [5] is a hybrid computing platform that is shown in a 

simplified version in Figure 1. It consists of two major parts. 

First, there are two embedded ARM Cortex A9 processors 

and their support infrastructure, including a cache hierarchy, 

memory controllers and I/O peripherals. This in itself 

represents a complete programmable embedded platform 

that can be used without any FPGA programming. The two 

ARM processor cores come with a SIMD extension called 

NEON that provides a 128-bit wide data path. 

 Secondly, the Zynq devices contain area of 

programable logic. This area represents a conventional 

FPGA. The major advantage of this platform is the close 

interaction between FPGA and embedded processors by 

means of a multitude of AXI4 communication ports. This 

way, it is possible to develop software for the processor and 

as necessary off-load compute-intensive tasks into the 

FPGA logic. 

 The following paragraph gives a short overview of our 

proposed design flow for Zynq as illustrated in Figure 2. 

The first step is no different from a typical software design 

flow and consists of the implementation of the application in 

pure software. The result of this task can be thoroughly 

verified and tested. Next, a profiling step can reveal the 

bottlenecks of the application, e.g. compute-intensive sub-

functions that need hardware acceleration.  

 This so called hardware/software partitioning involves 

not only the selection of functions that should be accelerated 

but also the decision on an adequate communication 

infrastructure such as DMA transfers versus memory 

mapping or the order of the data packets to be transferred. 

Additionally, some changes to the software are necessary in 

order to call the hardware accelerator instead of the original 

C function. The whole integration step involves some 

manual work, but is to a large extent assisted by the tools of 

the design flow. 

 In a traditional design flow those functions are 

implemented in a hardware description language like VHDL 

 
 

Figure 2: Design Flow 

 

Figure 1: Programmable Zynq platform 
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or Verilog by an experienced hardware designer.With the 

availability of industrial HLS tools like Xilinx Vivado HLS 

the manual hardware implementation can be replaced by an 

automatic step that uses the original software functions to 

generate corresponding hardware accelerators. The 

conversion requires several incremental manual refinement 

steps that include adding directives to the code or even 

restructuring the algorithm in order to obtain an efficient 

hardware implementation. During this process the code will 

still be executable as software, so that the original test and 

verification environment can be used. This is a big 

advantage over the traditional hardware design flow. 

 After the refinement is completed, the HLS tool can 

generate a hardware accelerator implementation that 

matches the design constraints, e.g. the required clock 

frequency and the amount of hardware resources. The 

accelerator design flow using the HLS tools is explained in 

more detail in Section 2.2. 

 Next, the integration step requires the instantiation of 

communication devices that are needed to enable the 

interaction between the hardware accelerator and the 

processor. Finally, a system synthesis step generates a bit 

stream to program the FPGA logic. 

 

2.2 High-Level Synthesis for Programmable Logic 

 

HLS tools raise the level of abstraction for designs in the 

programmable logic, and make the time-consuming and 

error-prone register-transfer level (RTL) design tasks 

transparent. These tools take as their input a high-level 

description of the specific algorithm to implement and 

generate the RTL design for the target hardware accelerator.  

Modern HLS tools accept untimed C/C++ descriptions as 

their input, from which they interpret the sequential 

semantics of the input/output behavior and the architecture 

specifications. Based on the C/C++ code, compiler 

directives and target throughput requirements, these tools 

generate high-performance pipelined architectures. 

Furthermore, they enable automatic pipeline stage insertion 

and resource sharing to reduce hardware resource 

utilization.  

 The overall hardware design flow adopted in this paper 

is shown in Figure 3. The first step in this flow is 

restructuring a reference C/C++ code which could have 

been derived from a MATLAB functional description. Here, 

restructuring means doing modifications in the original code 

to turn it into a format more suitable for the target 

processing engine. This is similar to rearranging an 

application’s code to have more efficient performance on a 

DSP processor. The functional verification of the 

implementation code is using traditional C/C++ compilers 

(e.g., gcc) and reusing C/C++ level test benches developed 

for the verification of the reference code. In addition to the 

implementation code, constraints and compiler directives 

(e.g., pragmas inserted in the code) are the other important 

input of the HLS tool. Two essential constraints are the 

target FPGA family (i.e., technology) and target clock 

frequency, which obviously have an effect on the number of 

pipeline stages in the generated architecture. Different types 

of directives can be applied to different sections of the code. 

For example, there are directives that are applied to loops 

(e.g., loop unrolling), while other directives can be applied 

to arrays (e.g., to partition an array into smaller arrays based 

on the unrolling requirements). As another example, there 

are directives to limit the instances of specific functions or 

operations in order to minimize the corresponding FPGA 

resource utilization.  

The HLS tools take all these inputs (i.e., the 

implementation C/C++ code, constraints and directives) to 

generate an RTL output and to report the throughput of the 

generated architecture. If the required throughput is not met, 

the designer can modify the implementation C/C++ code 

and/or the directives. If the generated architecture meets the 

required throughput, then the RTL output is used as the 

input to the Xilinx Vivado or ISE/EDK tools. The final 

achievable clock frequency and number of FPGA resources 

used is reported only after running logic synthesis and 

place&route. If the design does not meet timing or the 

FPGA resources are not as expected, the designer should 

 

Figure 3: High-level Synthesis for Programmable Logic 
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modify the implementation C/C++ code and/or the compiler 

directives. It is worth noting that this is an iterative design 

flow where the implementation code can go through 

different types of code restructuring until the design 

requirements are met. A key concept to keep in mind is that 

the C-level verification infrastructure is re-used to verify 

any change to the implementation. In this way, verification 

is not carried out at the RTL level, avoiding time-consuming 

RTL simulation and hence, contributing to the reduction in 

the overall development time. 

 

3. SYSTEM MODEL FOR DPD 

 

High PAPR is a major problem of the non-constant 

envelope signals (e.g., wideband code division multiple 

access and orthogonal frequency division multiple access 

signals), which are widely adopted in 3G/4G and emerging 

wireless systems. Due to high PAPR and PA nonlinearity, 

the transmitted signals get distorted in practice. This 

distortion typically results in a growth of the out-of-band 

spurious emissions. A straightforward solution to this 

problem is to back off the PA input so as to keep it in the 

linear operating range of the PA. However, the main 

disadvantage of this approach is the inefficient use of the 

PA, which results in higher cost than required for the same 

output power. Another solution is using DPD, which 

negates the nonlinearity effects of the PA and increases the 

efficiency.  

As shown in Figure 4, the DPD system consists of a 

pre-distorter employed prior to the amplification and a 

parameter estimator on the feedback path from the output of 

the PA. Please note that the illustration in Figure 4 is an 

algorithmic view, which excludes the digital-to-analog and 

analog-to-digital converters at the PA input and output, 

respectively, as well as the RF circuitry in between.  

 The parameter estimator computes the coefficients of 

the pre-distorter based on the samples of the PA input and 

output. In order to separate the PA behavior from the 

additional analog hardware effects, the PA output yo(n) is 

aligned prior to the parameter estimation.  The aligned PA 

output y(n) matches the amplitude, delay and phase 

variations of z(n). 

The pre-distorter and parameter estimator rely on a 

memory model that is used to describe the non-linearity 

effects of the PA. For wideband DPD applications, it is 

quite common to employ Volterra series based models [3]. 

The most general form of non-linearity with M-tap memory 

is represented using Volterra series as 
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is the  contribution of the kth order Volterra kernel hk and 

the input y(n). As shown in (1) and (2), the Volterra series 

method results in a very complex expression. In order to 

have a more practical representation, simpler models have 

been derived by selecting only some of the Volterra 

products in (2). For example, the memory polynomial model 

is one of the well-known simplified models [3], denoted as  

 

          

   

   

   

   

                          

   

where all the non-diagonal Volterra series terms are set to 

zero and the non-zero coefficients for the diagonal terms are 

represented by akm. In (3), the second input term depends 

only on the magnitude of the signal |y(n – m)|, where k 

denotes the magnitude order. The model in (3) conforms to 

the boundary conditions since it reduces to a linear time-

invariant system when the signal magnitude is small. PAs 

are also linear for small signals. 

 The memory polynomial method has been proven to 

effectively model the actual PAs under typical operating 

conditions. Nevertheless there have been more generalized 

models derived to achieve even better performance [3]. The 

following model includes both diagonal and off-diagonal 

terms: 

 

          

        

                                      

         

            

                         

 

where Kd an Md are the index arrays for the diagonal terms, 

and Ko, Mo and Ro are the index arrays for the off-diagonal 

terms composed of a signal and a lagging magnitude. Index 

arrays allow the selection of the delay taps and the 

magnitude powers over a given range; rather than 

implementing all the delay taps and powers as in (3), 

requiring all the coefficients akm. In vector form, equation 

(4) can be rewritten as 

 

z(n) = Un A                                  (5) 

 

where A is the parameter vector which incorporates the 

active diagonal and off-diagonal coefficients  akm and âkmr, 

and Un is a row vector of active diagonal and off-diagonal 

terms of signal and magnitude products in (4). 
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 The parameter estimator finds the coefficients in A, 

which are then used by the pre-distorter.  The PA inputs z(n) 

and the aligned PA outputs y(n) are captured to be able to 

estimate the coefficients. After capturing L samples of z(n) 

and L + additional samples of y(n) (number of additional 

samples is based on the delay range adopted in (4)), the 

relation in (5) can be expressed in matrix form as  

 

Z = UA                                     (6) 

 

where Z = [z(n) z(n - 1)   z(n – L + 1)]
T
, A is the vector to 

be estimated, U = [Un
T
  Un-1

T
    Un-L+1

T
 ]

T
, Un is the row 

vector in (5) and (.)
T
 is the transpose operation. The least 

squares solution to (6) can be found by multiplying each 

side with U
H
 (i.e., the conjugate transpose of U), leading to 

 

W = VA                                    (7)                     

 

where W = U
H
Z and V = U

H
U.  Given that the number of 

active coefficients is NA, W is a vector of (NA x 1) and V is a 

matrix of size (NA x NA). The solution to (7) can be found as  

 

A = V
-1

W.                                  (8)                     

 

The VW computation module in Figure 4 is for the 

computation of V and W in (7). The solution in (8) is found 

by the A computation module.  

In this paper, we consider the efficient implementation 

of alignment and parameter estimation blocks (i.e., colored 

blocks in Figure 4). In a DPD system, these blocks are 

employed to update the pre-distorter coefficients when there 

are major changes in the signal characteristics and/or power 

dynamics. Hence, unlike the pre-distorter, they do not 

operate at the sample rate. Here our main goal is to reduce 

the overall coefficient update time. In this way, the DPD 

solution reacts faster to the changing conditions, leading to 

more effective pre-distortion correction. Furthermore, faster 

updates enable the support of more complex DPD solutions, 

using larger number of active coefficients NA. With shorter 

update times, it is also possible to run the same design 

multiple times in a serial fashion, in order to update pre-

distorter coefficients of different data paths. This approach 

allows the implementation of efficient DPD solutions for 

multi-antenna base-stations.  

 In the next section, we give the details of our software 

programmable design flow, which facilitates the 

implementation of efficient DPD coefficient update 

solutions for modern wireless transmitters.   

 

4. SOFTWARE AND HARDWARE 

IMPLEMENTATION FOR DPD 

 

4.1 Software Implementation for DPD 

 

The DPD coefficient update software was targeted as a 

stand-alone solution running on one of the two ARM 

processors at 800 MHz. Without an operating system, the 

application has direct access to all hardware devices. This 

enables a very accurate profiling step with deterministic 

results. In this subsection, we first give an overview over the 

test environment we employed. Then we present the 

profiling step and the conclusions evolved from that and 

finally we propose a software optimization based on the 

ARM’s NEON engine that can significantly reduce the 

update time.  

 During the software development process a test 

environment has been used that reads the z(n) and y(n) 

samples from a reference vector and writes a set of 

coefficients. Subsequently, the coefficients are compared to 

a reference implementation written in Matlab that visualizes 

the difference between both sets of coefficients. The 

software profiling has been performed on two levels. First, 

the software was run on a standard x86 server and gprof was 

used to get a first estimate of the expected bottlenecks. 

Second, the software ran on the ARM processor and, 

depending on the gprof results, the interesting sub-functions 

have been instrumented with calls to the global CPU timer 

of the Zynq platform. This timer runs at half the CPU 

frequency, hence giving excellent resolution with the 

overhead of only a few cycles.  

The profiling results of the three main function blocks 

running on the ARM processor are given in Table 1. From 

 

Table 1: Results of initial profiling 

Function Time % 

Alignment 29.62ms 7.9 

VW computation 336.40ms 89.9 

A computation 8.09ms 2.2 
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Figure 4: Algorithmic view of DPD 
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the table it can be seen that the VW computation is the 

bottleneck of the application. It consumes 90% of the 

overall update time, making it a prime candidate for 

hardware acceleration. Before profiling, we expected the 

solver used for A computation in Figure 4 would consume a 

larger part of the update time, because in contrast to the 

other functionality it is performed in double precision 

floating point. However, the ARM’s floating point unit 

solved the task very efficiently. 

  Before actually implementing a hardware accelerator 

for the VW calculation, potential software optimization 

possibilities have been examined. The SIMD NEON engine 

of the ARM processor has a 128-bit wide data path. Since 

the VW computation works on 64-bit fixed-point data types, 

two parallel computations can be carried out in parallel. In 

Figure 5, one step of the VW, the computation of the W 

vector is presented in both pure C code and with the ARM 

NEON instructions applied. Instead of using low-level 

assembly instructions to access the NEON engine, the 

compiler provides a set of function-like wrappers for the 

instructions. These wrappers are called intrinsics and they 

provide type-safe operations, while allowing the compiler to 

automatically schedule the C variables to NEON registers. 

Furthermore, every compiler for ARM processors is 

required to define the macro __ARM_NEON__ in case the 

target machine has a NEON engine. That way, a single 

source code can be used for both NEON and non-NEON 

implementations. 

 The purpose of the code is the scalar multiplication of 

complex number s with the conjugate of complex vector u 

and adding the result to complex vector W.  In Figure 6, a 

visualization of the NEON registers is displayed. It is 

derived from the non-NEON C code. The two parallel 

operations compute the real and imaginary part of W 

concurrently. The operands for the imaginary part are 

swapped to allow a more efficient loading of the NEON 

registers inside the loop. 

 After applying the intrinsics in the C code, we expect a 

speed-up factor of about two, because two operations are 

calculated in parallel. Additionally to this speed-up, there 

can be a benefit in the fact that during the NEON operations 

the normal ARM processor is free and can continue 

processing simple non-NEON instructions like loop 

conditions and pointer increments while the NEON engine 

runs in parallel. 

 

4.2 High-Level Synthesis for DPD 

 

As shown in Table 1, the so-called VW computation in 

Figure 4 is the most time-consuming task of the parameter 

estimation process.  In order to improve the overall 

parameter update time, we have implemented a VW 

accelerator using the Vivado HLS tool. The VW accelerator 

takes the z(n) and y(n) samples as its inputs, constructs the 

U matrix of size (L x NA) in (6) and, then computes the W 

vector of size (NA x 1) and V matrix of size (NA x NA) as its 

outputs. Our accelerator has a programmable architecture 

such that it supports a different number of active 

coefficients NA and allows the flexible selection of diagonal 

and off-diagonal terms in the generalized memory model as 

in (4). Hence, it is possible to support different nonlinear 

models using the same VW accelerator.  In addition to using 

the design flow in Figure 3, the designer can make new 

changes in the existing C++ code and/or the compiler 

#ifndef __ARM_NEON__ 

void computeW (CINT64 *W,  

               CINT32 const *u,  

               CINT16 s, int N_A)  

{ 

  for (int i = 0; i < N_A; ++i) {    

    // conjugated complex multiplication 

    W[i].real += (int64_t)u[i].real*s.real 

               + (int64_t)u[i].imag*s.imag; 

    W[i].imag += (int64_t)u[i].real*s.imag  

               - (int64_t)u[i].imag*s.real; 

  } 

} 

 

#else // defined __ARM_NEON__ 

void computeW (CINT64 *W,  

               CINT32 const *u,  

               CINT16 s, int N_A) 

{ 

  // load s.real and negate second lane  

  // that we avoid subtraction below 

  int32x2_t sr; 

  sr = vset_lane_s32(s.real,sr,0); 

  sr = vset_lane_s32(-s.real,sr,1); 

   

  int32x2_t si = vdup_n_s32(s.imag);   

   

  for (int i = 0; i < N_A; ++i) { 

    // load operands 

    int64x2_t w = vld1q_s64((int64_t *)(W+i)); 

    int32x2_t ur = vld1_s32((int32_t *)(u+i)); 

    int32x2_t ui = vrev64_s32(ur); 

       

    // conjugated multiplication 

    w = vmlal_s32(w,sr,ur); 

    w = vmlal_s32(w,si,ui); 

       

    // store result 

    vst1q_s64((int64_t *)(W+i),w); 

  } 

} 

#endif 

 

Figure 5: Use of NEON instructions in the C code. 

 
 

Figure 6: Visualization of the NEON registers for computing 

W. 
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directives to generate a brand-new accelerator in much 

shorter time than required by a hand-coded RTL design. In 

the remainder of this section, we give specific examples of 

code re-writing and compiler directives that we have used 

for the VW accelerator. Furthermore, we present 

productivity results where we compare final FPGA 

resources and the development time.  

As shown in Figure 3, functional verification of the 

design is done in the C level. We have slightly modified the 

existing DPD parameter estimation code for our C++ test 

bench to validate our implementation code for VW 

computation.  

The designer can rewrite the C/C++ code to more 

efficiently utilize specific FPGA resources, and hence, 

improve timing and reduce area. There are two very specific 

examples of this type of optimizations: 1) bit-width 

optimizations; and 2) efficient use of embedded DSP blocks 

(i.e., DSP48s). For example, the reference C/C++ code is 

normally written using built-in C/C++ data types (e.g., 

short, int), whereas the actual design can be based on fixed-

point data types having word-lengths which are not integer 

multiples of the byte size. Here the HLS tool supports C++ 

template classes that can represent integer data types with 

arbitrary bit-width. For VW computation, we have 

leveraged the use of these template classes, hence reducing 

FPGA resources and minimizing the impact on timing. The 

snippet of C++ code in Figure 7 is a good example to show 

code re-writing, bit-width optimization and the efficient use 

of DSP48s. The example is focusing on the complex 

multiplication, which is widely used by the VW 

computation. A standard complex multiplication carries out 

four real multiplications, which requires the use of four 

different multipliers in a fully-pipelined implementation. 

However, as shown in Figure 7, equivalent functionality can 

be achieved by rewriting this code rather to use three 

multipliers (to employ less DSP48 blocks), at the expense of 

three additional pre-adders and one-bit increase in the 

multiplier word-length. In Figure 7, we show the 

multiplication of two complex numbers with 32-bit real and 

imaginary parts, using three multipliers. As it can be seen 

between lines 18-20, the C++ template class is used to 

declare 33-bit pre-adders.  Furthermore, based on lines 21-

23, the HLS tool generates three 33x32-bit multipliers, each 

giving a 65-bit result.  

The original reference C++ code for the complex 

multiplication is using four multipliers, each multiplying 

two 32-bit numbers. Please note that the original code uses 

built-in C/C++ data types and the 32-bit inputs should be 

casted to 64-bit integer to avoid loss of information (because 

the result is a 64-bit integer). However, based on this code, 

the HLS tool generates four 64x64-bit multipliers, which are 

obviously much more expensive in terms of DSP48s. On the 

other hand, by using the C++ template classes in Figure 7 

for the data types, the C++ code functionality works fine 

without any casting, while the HLS tool generates only three 

33x32-bit multipliers, each using four DSP48s.  

The “CMULT32” function in Figure 7 is inlined and 

used in different parts of the code. Here it is feasible to limit 

the instances of multiplications to three, to be able to share 

the same multipliers throughout the code. The snippet of 

C++ code in Figure 8 shows how this can be achieved by 

adding a compiler directive. 

The main reason to implement a VW accelerator is to 

reduce the time used for VW computation and, hence, to 

improve the overall DPD parameter estimation time. For 

this purpose, the loops in the C++ code need to be pipelined 

and also unrolled if possible. Using the HLS tool, we have 

verified that the most time-consuming loop in our 

implementation is the V computation loop.  We have 

unrolled this loop by a configurable factor which is 

predefined as a C macro in the compiler options. Depending 

on the unrolling factor, the designer can choose between 

better resource sharing and shorter computation time. The 

compiler directives that control the loop unrolling are shown 

in Figure 9. On line 6, based on the unrolling factor, 

instances of the multiplication operation can be set more 

than three, compared to Figure 8. This is because three 

multipliers cannot be shared in the case of loop 

parallelization. Furthermore, on line 9, we partition the array 

1:  typedef struct { 

2:      ap_int<32>   real; 

3:      ap_int<32>   imag; 

4:  } CINT32; 

5: 

6:  typedef struct { 

7:      ap_int<64>   real; 

8:      ap_int<64>   imag; 

9:  } CINT64; 

10: 

11: CINT64 CMULT32(CINT32 x, CINT32 y) 

12: { 

13:  CINT64 res; 

14: ap_int<33> preAdd1; 

15: ap_int<33> preAdd2; 

16: ap_int<33> preAdd3; 

17: ap_int<65> sharedMul; 

18: preAdd1 = (ap_int<33>)x.real + x.imag; 

19: preAdd2 = (ap_int<33>)x.imag - x.real; 

20: preAdd3 = (ap_int<33>)y.real + y.imag; 

21: sharedMul = x.real * preAdd3; 

22: res.real = sharedMul - y.imag * preAdd1; 

23: res.imag = sharedMul + y.real * preAdd2; 

24: return res; 

25: } 

Figure 7: Optimized complex multiplication 

 

1:  void vw_accelerator_top( 

2:       ap_axiu<BW,x,y,z> InData[INSIZE], 

3:       ap_axiu<BW,x,y,z> OutData[OUTSIZE], 

4:       int N_A, int L, )  

5:  {  

6:#pragma AP allocation instances=mul limit=3 operation 

7:       <function body> 

8:  } 

Figure 8: Directive to limit instances of operations 
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that stores V values (mapped to block RAMs after RTL 

synthesis) by the unrolling factor, to avoid access problems. 

Lines 14 and 15 show how the pipelining and unrolling 

directives are applied, respectively.  

Our implementation uses single input single output data 

interface, for simplicity in the system architecture. The input 

and output data parameters are declared as arrays. In the 

input data array, complex capture samples z(n) and y(n) are 

ordered in an interleaved fashion. The output data array 

contains the NA complex elements of W and, consecutively, 

the complex elements in V. The HLS tool supports a C-level 

macro that turns these arrays into high-speed streaming 

interfaces. Furthermore, different type of macros can be 

used to assign a low-throughput memory-mapped 

communication interface to the top-level configuration 

parameters, such as NA or L. A snippet of the C++ code that 

shows the use of these macros is available in Figure 10. As 

shown in lines 2 and 3, the input and output data arrays are 

declared using a template structure. Here the template 

parameters allow the designer to set the bit-width of 

different fields in the streaming protocol at the time of 

variable declaration. For example, “BW” is a previously-

defined integer constant to set the bit-width of the streaming 

data samples. Likewise, “x”, “y” and “z” are used to set the 

bit-width of other fields in the streaming protocol. 

In Figure 11, we show how the VW accelerator design 

generated using the Vivado HLS tool evolves over time. 

Please note that the first two weeks of the development time 

is spent for the integration of the Vivado HLS-generated 

accelerator to the processor subsystem. The accelerator used 

during this time is based on the original reference C++ code 

with minor modifications. The C++ test bench for functional 

verification was also set up during the same time frame. 

Figure 11 shows that the actual accelerator optimization 

process takes less than a week. For example, the massive 

reduction in the number of DSP48s is based on the bit-width 

optimizations, code rewriting for complex multiplication 

and the application of compiler directives to limit the 

multiplication instances, as discussed earlier (see Figures 8 

and 9). The bit-width optimizations also played an important 

role in reducing the number of flip-flops (FFs). The results 

obtained in the end of acceleration optimization phase are 

very similar to the hand-coded RTL results. 

As discussed earlier, V computation is the most time-

consuming part of the VW accelerator. Hence, during our 

accelerator exploration, we have implemented faster 

accelerators by unrolling the V loop. The last two data 

points in Figure 11 are for V loop unrolling by 2 and 4. The 

changes applied for V loop unrolling in Figure 9 confirm the 

size increase in Figure 11. For example, multiplication 

instances for the complex multiplier need to be increased by 

the unrolling factor. As a result, the number of DSP48s 

needed for the complex multiplication increases by the same 

factor. The accelerator exploration using Vivado HLS takes 

only a few days, whereas the traditional RTL design 

 

Figure 11: Design evolution vs. development time 

1:  void vw_accelerator_top( 

2:       ap_axiu<BW,x,y,z> InData[INSIZE], 

3:       ap_axiu<BW,x,y,z> OutData[OUTSIZE], 

4:       int N_A, int L, )  

5:  {  

6:#pragma AP allocation instances=mul    

  limit=3*UNROLL_FACTOR operation 

7:        <function body> 

8:      CINT64 Varray[VSIZE]; 

9: #pragma AP array_partition variable=Varray cyclic 
factor=UNROLL_FACTOR dim=1 

10:  <function body> 

11:       label_compute_V: 
12:     for (int i=0; i < VSIZE; ++i) 

13:     { 

14:#pragma AP pipeline 

15:#pragma AP unroll factor=UNROLL_FACTOR 

16:          <loop body> 

17:     } 

18:       <function body> 

19: } 

Figure 9: Loop unrolling 

 

1:  void vw_accelerator_top( 

2:       ap_axiu<BW,x,y,z> InData[INSIZE], 

3:       ap_axiu<BW,x,y,z> OutData[OUTSIZE], 

4:       int N_A, int L, )  

5:  {      

6:     // Streaming interfaces 

7:     AP_BUS_AXI_STREAMD(InData, BUS_INDATA); 

8:     AP_BUS_AXI_STREAMD(OutData, BUS_OUTDATA); 

9:     // Memory-mapped interface 

10:    AP_INTERFACE_REG(N_A,       ap_none); 

11:    AP_INTERFACE_REG(L,         ap_none); 

12:      

13:    AP_BUS_AXI4_LITE(N_A,       AXIlite); 

14:    AP_BUS_AXI4_LITE(L,         AXIlite); 

15:       <function body> 

16: }    

Figure 10: Example of accelerator interface 
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requires much longer time. In the case of Vivado HLS, the 

effort can be as simple as changing a few compiler 

directives as shown in Figure 9.  

Our implementation code in this paper allows different 

configurations for VW computation, each supporting a 

different value for maximum number of pre-distorter 

coefficients. Please note the number active coefficients NA 

in (6) is a run-time parameter of the accelerator, as shown in 

Figure 10 (see lines 4 and 10), which is bounded by the 

maximum number of coefficients. We use a C macro in the 

compiler options for the configuration selection, which 

defines the maximum number of coefficients. For simplicity 

in the presentation, Figure 11 shows the accelerator results 

for the first configuration only, supporting the least number 

of coefficients. However, at the end of the design process, 

we have generated the accelerators for the other two 

configurations as well. All accelerators are successfully 

running on the Zynq board.   

 

4.3 Integration of Hardware and Software Components 

 

The communication between the processor subsystem and 

hardware accelerator is based on the Advanced eXtensible 

Interface (AXI) protocol [6], which is part of ARM AMBA, 

a family of micro controller buses first introduced in 1996. 

The second and most-recent version of AXI is AXI4, which 

is included in AMBA 4.0 released in 2010. Our design uses 

the Xilinx AXI interconnect core IP [6], which is able to 

connect one or more AXI memory-mapped master devices 

to one or more memory-mapped slave devices. As shown in 

Figure 12, we have used the AXI interconnect core to 

connect AXI4 Lite masters to slaves. The AXI4 Lite is a 

light-weight, single transaction memory mapped interface. 

When connected to AXI4 Lite slaves, the AXI interconnect 

core stores the transaction IDs and restores them in the 

response transfers. Furthermore, it controls the transactions 

and does not propagate any illegal transaction to the AXI4 

Lite slave.   

 The AXI FIFOs in Figure 12 are for the input and 

output data samples of the accelerator, which are connected 

to the corresponding AXI4 stream interfaces of the 

accelerator generated as shown in Figure 10. The AXI4 Lite 

slave on the accelerator is for the VW configuration 

parameters. The AXI4 Lite interface for the accelerator is 

generated in the C level, as illustrated in Figure 10. 

 

5. SYSTEM PERFORMANCE 

 

In this section, we compare the coefficient update times for 

three specific VW configurations, discussed at the end of 

Section 4.2. These three configurations will be called C1, 

C2 and C3 from now on, which are ordered according to the 

increasing computational complexity. Here C1 denotes the 

simplest configuration, supporting the lowest value for the 

maximum number of pre-distorter coefficients. The more 

complex architectures correspond to the DPD solutions with 

increasing maximum number of coefficients. Compared to 

C1, C2 and C3 support 1.5X and 2.3X more coefficients, 

respectively.  

 There are four different designs implemented for each 

of these configurations: 1) Software-only design optimizing 

VW computation using NEON instructions (VWNeon), 2) 

Software + VW accelerator (VWAx1), 3) Software + VW 

accelerator unrolling the V computation loop by two 

(VWAx2), 4) Software + VW accelerator unrolling the V 

computation loop by four (VWAx4).  

 All the designs are implemented based on the software-

programmable flow explained in Section 2. In designs 

VWAx1, VWAx2 and VWAx4, only the Alignment and A 

Computation blocks (see Figure 4) are running on the 

processer subsystem since the VW computation is carried 

out by the hardware accelerator. Unrolling of the V 

computation loop is achieved using compiler directives, as 

discussed in Section 4.2 (see Figure 9).  

 Target clock frequency for our designs is 166 MHz. 

The area results in Figure 11 have also been obtained at 166 

MHz. This clock frequency meets our current system 

requirements. However, it is possible to increase the target 

 

Figure 12: Integration of processor subsystem with the 

hardware accelerator 
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clock frequency constraint in Vivado HLS, in order to 

generate faster accelerators.  

 Processing times for different configurations and 

designs are compared in Table 2. Here the results for the 

original software implementation of C1 (previously shown 

in Table 1) are also included, to compare them to the results 

for “C1/VWNeon”. The total update time for 

“C1/VWNeon” meets our current timing requirements 

thanks to the NEON optimizations. However, depending on 

the transmitter specifications, the accelerated designs for C1 

(with/without loop unrolling) can also be preferable to use. 

For example, in a multi-antenna base station, it is possible to 

run an accelerated design more than once (computing pre-

distorter coefficients for a different antenna each time), and 

attain an update time similar to 254.64 ms. 

 For more complex DPD solutions, the designs 

“C2/VWAx1” and “C3/VWAx2” result in update times 

comparable to “C1/VWNeon”. Hence, based on our current 

requirements, it is more feasible to use these designs for C2 

and C3. This is because they use less hardware resources 

compared to the accelerated designs with further loop 

unrolling. However, further loop unrolling can be beneficial 

under different requirements, as in the case of multiple 

antennas discussed above.  

 
Table 2: Comparison of processing times 

Architecture 

/Design 

Align. 

(ms) 

VW 

(ms)  

A  

(ms) 

Total 

Time 

(ms) 

C1/original SW 29.62 336.40 8.09 374.11 

C1/VWNeon 29.62 216.93 8.09 254.64 

C1/VWAx1 29.62 63.14 8.09 100.85 

C1/VWAx2 29.62 41.20 8.09 78.91 

C1/VWAx4 29.62 32.34 8.09 70.05 

C2/VWNeon 29.62 449.90 15.06 494.58 

C2/VWAx1 29.62 130.95 15.06 175.63 

C2/VWAx2 29.62 80.61 15.06 125.29 

C2/VWAx4 29.62 58.65 15.06 103.33 

C3/VWNeon 29.62 1004.5 61.72 1095.89 

C3/VWAx1 29.62 292.39 61.72 383.73 

C3/VWAx2 29.62 167.92 61.72 259.26 

C3/VWAx4 29.62 110.72 61.72 202.06 

 

 In Table 2, it is shown that the accelerated designs 

using an unrolling factor of four can result in up to 5X 

improvement in coefficient update times, compared to 

NEON-optimized solution (e.g., “C3/VWAx4” vs. 

“C3/VWNeon”).  For all configurations, it is also worth 

noting that unrolling V computation loop by four results in 

less significant time improvement, compared to unrolling by 

two (e.g., “C3/VWAx4” vs. “C3/VWAx2”). This is because 

the time spent for the other functions of the VW accelerator 

becomes more dominant in the total update time.  

 

6. CONCLUSIONS 

 

In this paper, we have presented a software-programmable 

design flow for DPD targeting new generation FPGAs. Our 

design flow allows the flexible partitioning of functionality 

among hardware and software components, and increases 

the productivity by reducing the time for implementation 

and system integration. We have used the ARM NEON 

instructions to optimize the software implementation and 

employed Vivado HLS as the HLS tool for the 

programmable logic. By taking into account three different 

DPD architectures, we have implemented several designs 

trading off faster pre-distorter coefficient update times 

versus the size of the design. We have tested our designs 

successfully on the target platform. Our flexible design flow 

facilitates the generation of effective DPD solutions for 

modern wideband and multi-antenna transmitters. 
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